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Abstract

Cerebrovascular health is of great concern, especially in the ageing population, as stiff
vessels are linked with diseases such as stroke, dementia, and age-related disabilities.
Data from brain imaging techniques, including magnetic resonance imaging (MRI) and
transcranial Doppler ultrasound (T'CD), can be used to infer information regarding the
health of underlying arteries. Such health assessments are commonly based on an index
that is dependent on the properties of the device and can be related to known vascular
health factors by a mathematical model.

The contribution of this thesis to the field of cerebrovascular health and brain imaging
is twofold: First, we develop a timing index (TI) as a measure of cerebrovascular health.
The relationship between TI and vascular health factors is derived in the context of
pressure waveforms using transmission line theory and Windkessel model models. The
proposed formula for TI matches data reported in the literature and helps to understand
the flattening behaviour observed in the arrival time of reflected waves in aged subjects.
Using similar mathematical modelling we also derive an expression for the relationship
between the existing augmentation index (AI) and the same vascular health factors.
Together with existing pulsatility index (PI) results, we show mathematically that TIT
is potentially more strongly related to vessel stiffness than either of the two indices
currently used to index cerebrovascular health i.e., PI and AI. This is particularly so in
younger to middle-aged subjects where interventions are best applied. We then show
that TI can be applied to TCD measurements of blood flow velocity. To our knowledge,
this is the first use of wave reflection time to measure vascular health in the brain.
Transcranial Doppler Ultrasound Timing Index (TIpcp) shows a significant correlation
with age. Furthermore, compared to the existing transcranial Doppler augmentation
index (Alrcp) and transcranial Doppler pulsatility index (PIpcp), the TIpep show
stronger correlations with cardiorespiratory fitness and the magnetic resonance imaging
pulsatility index (PIymgr).

The second contribution of this thesis is in its application of near-infrared spectroscopy
(NiRS). Firstly, we propose a NiRS signal model capable of producing synthetic NiRS
signals comprising low-frequency components, arterial pulsation signals, reflected waves,
Mayer and respiratory waves and a haemodynamic response function. The model out-
puts are compared with measured NiRS signals, and it is shown that the modelled
signal is equivalent to the recorded signal as a later set of recordings on the same chan-
nel. Then, as an emerging tool for measuring cerebrovascular health, we propose a novel
algorithm for locating systolic and reflected peaks on an averaged NiRS signal, thereby

applying the TT to NiRS. The new near-infrared spectroscopy timing index (TInirs)



iv

shows stronger correlations with age, cardiorespiratory fitness (CRF) and Plygr than
the pulse relaxation function (PReFx) which is an existing NiRS-based vascular health
index.

Compared with existing brain imaging techniques, NiRS offers several advantages,
such as being inexpensive, portable and easy-to-use. The NiRS-related contributions of
this thesis are the development of a NiRS signal model and a NiRS-based cerebrovascular
health measure. These will help in the development of a technique for the routine
clinical measurement of cerebrovascular health. Such a technique would facilitate early
intervention in the progression of vascular stiffness with age and, potentially, vascular-

related diseases such as stroke and dementia.
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